--- title: "The Language-Based Assessment Model (L-BAM) Library" vignette: > %\VignetteIndexEntry{LBAM} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` The L-BAM library comprises information about pre-trained models. The models can be called with `textPredict()`, `textAssess()` or `textClassify()` like this: ```{r textPredict_examples, eval = FALSE, echo=TRUE} library(text) # Example calling a model using the URL textPredict( model_info = "facebook_valence", texts = "what is the valence of this text?" ) # Example calling a model having an abbreviation textClassify( model_info = "implicit_power_fine_tuned_roberta", texts = "It looks like they have problems collaborating." ) ``` The text prediction functions can be given a model and a text, and automatically transform the text to word embeddings and produce estimated scores or probabilities. If you want to add a pre-trained model to the L-BAM library, please fill out the details in this [Google sheet](https://docs.google.com/spreadsheets/d/1K16JdK7zOmuRktqgaYs5sgaHnkUVwB9v6ERxZdd9iW8/edit#gid=0) and email us (*oscar [ d_o t] kjell [a _ t] psy [DOT] lu [d_o_t]se*) so that we can update the table online. *Note that you can adjust the width of the columns when scrolling the table.* ```{r models_table, eval = TRUE, echo=FALSE} library("reactable") # see vignette: https://glin.github.io/reactable/articles/examples.html#custom-rendering model_data <- read.csv(system.file("extdata", "The_L-BAM_Library.csv", package = "text"), header = TRUE, skip = 3) reactable::reactable( data = model_data, filterable = TRUE, defaultPageSize = 10, highlight = TRUE, resizable = TRUE, theme = reactableTheme( borderColor = "#1f7a1f", # stripedColor = "#e6ffe6", highlightColor = "#ebfaeb", cellPadding = "8px 12px", style = list(fontFamily = "-apple-system, BlinkMacSystemFont, Segoe UI, Helvetica, Arial, sans-serif") ), columns = list( Construct_Concept_Behaviours = colDef(minWidth = 280), Outcome = colDef(minWidth = 280), Language = colDef(minWidth = 280), Language_type = colDef(minWidth = 280), Level = colDef(minWidth = 280), N_training = colDef(minWidth = 280), N_evaluation = colDef(minWidth = 280), Source = colDef(minWidth = 280), Participants_training = colDef(minWidth = 280), Participants_evaluation = colDef(minWidth = 280), Label_types = colDef(minWidth = 280), Language_domain_distribution = colDef(minWidth = 280), Open_data = colDef(minWidth = 280), Model_type = colDef(minWidth = 280), Features = colDef(minWidth = 280), Validation_metric1 = colDef(minWidth = 280), N_fold_cv_accuracy.1 = colDef(minWidth = 280), Held_out_accuracy.1 = colDef(minWidth = 280), SEMP_accuracy.1 = colDef(minWidth = 280), Other_metrics_n_fold_cv = colDef(minWidth = 280), Other_metrics_held_out = colDef(minWidth = 280), Other_metrics_SEMP = colDef(minWidth = 280), Ethical_approval = colDef(minWidth = 280), Ethical_statement = colDef(minWidth = 280), Reference = colDef(minWidth = 280), Date = colDef(minWidth = 280), Contact_details = colDef(minWidth = 280), License = colDef(minWidth = 280), Study_type = colDef(minWidth = 280), Original = colDef(minWidth = 280), Miscellaneous = colDef(minWidth = 280), Command_info = colDef(minWidth = 800), Name = colDef(minWidth = 280), Path = colDef(minWidth = 280), Model_Type = colDef(minWidth = 280) ), showPageSizeOptions = TRUE, groupBy = "Construct_Concept_Behaviours" ) ``` ### References Gu, Kjell, Schwartz & Kjell. (2024). Natural Language Response Formats for Assessing Depression and Worry with Large Language Models: A Sequential Evaluation with Model Pre-registration. Kjell, O. N., Sikström, S., Kjell, K., & Schwartz, H. A. (2022). Natural language analyzed with AI-based transformers predict traditional subjective well-being measures approaching the theoretical upper limits in accuracy. Scientific reports, 12(1), 3918. Nilsson, Runge, Ganesan, Lövenstierne, Soni & Kjell (2024) Automatic Implicit Motives Codings are at Least as Accurate as Humans’ and 99% Faster