--- title: "Implicit Motives Tutorial" description: " " author: "" opengraph: image: src: "http://r-text.org/articles/text_files/figure-html/unnamed-chunk-5-1.png" twitter: card: summary_large_image creator: "@oscarkjell" output: github_document #rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{implicitmotives_tutorial} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) evaluate = FALSE ``` ```{r, eval = evaluate, warning=FALSE, message=FALSE, dpi=300} #### Initial setup: Install and open the text package in an R environment (only required the first time). #install.packages("text") #textrpp_install() #textrpp_initialize() #### Load the package. library(text) #### 1: Load data. The following data serves as an example: data <- dplyr::mutate(.data = Language_based_assessment_data_8, participant_id = dplyr::row_number()) #### 2: Retrieve sentence- and person-level predictions. Choose between our three motives: power, achievement, or affiliation. predictions <- textPredict( texts = data$satisfactiontexts, model_info = "implicitpower_roberta23_nilsson2024", participant_id = data$participant_id, dataset_to_merge_predictions = data) #### 3: Examine sentence- and person-level predictions. predictions$sentence_predictions predictions$person_predictions predictions$dataset ```